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EFFECT OF STRUCTURAL AND MECHANICAL CHARACTERISTICS

OF THE COMPOSITE MATERIAL ON THE DEFORMATION

OF A REFLECTOR ANTENNA

UDC 539.3S. K. Golushko and A. V. Yurchenko

This is a study of the effect of structural and mechanical characteristics of a composite material on
the stress–strain state of a reflector antenna shaped as a composite thin shell of revolution subjected
to gravity, wind, and temperature loads. The boundary-value problem for the system of partial differ-
ential equations governing the behavior of this structure is reduced to a sequence of boundary-value
problems for inhomogeneous systems of ordinary differential equations with variable coefficients. The
resulting stiff systems of equations are solved by Godunov’s method of discrete orthogonalization.

Formulation of the Problem the and Method of the Solution. The reflector antenna is an important
element of satellite systems, which are widely used to ensure effective cordless communication. The main require-
ments imposed on these antennas are strength and minimum deviation of the reflector profile from a specified shape.
The use of composite materials (CM) opens up wide opportunities for meeting these requirements.

We consider a reflector antenna shaped as a reinforced thin parabolic shell of revolution with a focal dis-
tance f , aperture diameter D, and thickness 2h. We study the effect of structural and mechanical characteristics
of the composite on the behavior of the structure under the same loading and fixing conditions and geometry and
linear dimensions of the shell.

To model the reflector, we use the structural model of a reinforced layer, structural failure criterion [1], and
classical linear model of a thin shell. The boundary-value problem is formulated for a system of 19 algebraic and
partial differential equations for 19 unknown functions. The initial boundary-value problem is reduced to a sequence
of boundary-value problems for systems of ordinary differential equations by the method of separation of variables
using the trigonometric basis [2]. Each system of ordinary differential equations can be written in the general form

dym
dr

= Am(r)ym + bm(r), (1)

where ym(r) is the vector function of the expansion coefficients for the mth harmonic, r is the distance from the
reference surface to the axis of revolution, Am(r) is the 8 × 8 matrix of the system, and bm(r) is the free-term
vector. System (1) and the boundary conditions

Glym(rmin) = gl,m, Grym(rmax) = gr,m (2)

(Gl and Gr are 8 × 4 matrices and gl,m and gr,m are vectors of dimension 4) constitute a closed boundary-value
problem.

Systems (1) are stiff systems by virtue of their high order and the presence of such small parameters as
h/Ri and E0/En (Ri are the principal radii of curvature and E0 and En are Young’s moduli of the binding
and reinforcing fibers of the nth family, respectively). Moreover, for shells of nonzero Gaussian curvature with
reinforcement parameters variable in the meridional direction, the matrix of the system strongly depends on the
meridional coordinate. This implies that the ratio Λm(r) = max

j
|λj,m(r)|/min

j
|λj,m(r)|, where λj,m(r) are the

eigenvalues of the matrix Am(r), is much greater than unity.
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Fig. 1

Figure 1a shows the quantities Λm as functions of the radius and harmonic number for the calculated
stress–strain state of aluminum–carbon (solid curves), titanium–carbon (dotted curves), and carbon–plastic (dashed
curves) reflectors. Curves 1 (which coincide for three types of reflectors) refer to m = 0, curves 2 to m = −1 and 1,
and curves 3 to m = −2 and 2. The quantity Λm(r) strongly depends on the meridional coordinate and mechanical
characteristics of the CM. Moreover, this dependence changes both quantitatively and qualitatively for different
harmonics. The maximum values correspond to antisymmetric components (m = −1 and 1). Figure 1b shows the
dependence of the quantity Λ∗−1 = max

r
{Λ−1(r)} on structural parameters of the CM, calculated for antisymmetric

components of the stress–strain state of the titanium–carbon reflector. This dependence demonstrates a considerable
effect of the reinforcement structure on the stiffness of the system, which changes twofold in Fig. 1b. Here ω2 is the
specific intensity of circumferential fibers and ψ1 = −ψ3 = ψ are the reinforcing angles of spiral fibers.

The boundary-value problem for a stiff system of differential equations is solved by the method of discrete
orthogonalization proposed by Godunov [3].

Stress–Strain State of the Reflector Under Gravity. We consider a parabolic reflector with an aperture
diameter of 4 m and a focal distance of 1.5 m, which is rigidly fixed at the center over the radius of 0.3 m and
loaded by gravity. The antenna axis is tilted at an angle β = 30◦ to the Earth’s surface. The structure is made
of aluminum (density is ρ0 = 2.68 · 103 kg/m3, E0 = 70 GPa, and ultimate strength is σ∗0 = 170 MPa) reinforced
by high-modulus carbon fibers (ρn = 1.9 · 103 kg/m3, En = 780 GPa, and σ∗n = 2.5 GPa) with a volume fraction
ωa = 0.3. The reinforcement consists of one circumferential and two spiral families. The specific intensities of
reinforcing of the spiral families ω1 and ω3 are related to ω2 by the formula ω1 = ω3 = (1 − ω2)/2. The density
averaged over the thickness is ρ ≈ 2.446 · 103 kg/m3 and the reflector thickness is 2h = 15 · 10−3 m. The gravity
is decomposed into axisymmetric and antisymmetric loads governed by systems (1), (2) for m = 0 and m = −1,
respectively. The reduced loads are given by

q1,0 = −2hρg sinβ sin θ, q2,0 = 0, q3,0 = 2hρg sinβ cos θ,

q1,−1 = −2hρg cosβ cos θ, q2,−1 = −2hρg cosβ, q3,−1 = −2hρg cosβ sin θ.

Here q1, q2, and q3 are the meridional, circumferential, and normal components, respectively, and θ is the angle
between the normal to the shell surface and the axis of revolution.

Figure 2a shows the maximum stress intensities in the matrix (bs0) and spiral (bs1) and circumferential (bs2)
reinforcement families versus the reinforcing angle of spiral fibers ψ. Figure 2b shows the curves wmax(ψ). The
solid curves refer to ω2 = 0, the dotted curves to ω2 = 0.4, and the dashed curves to ω2 = 0.8. The dot-and-
dashed curves refer to the maximum deflections and stress intensities in an isotropic aluminum shell. One can see
that reinforcement can either improve or deteriorate the rigidity and strength characteristics of the structure. For
example, owing to the meridional reinforcement, the stresses in the matrix and deflections decrease by approximately
factors of 2 and 1.5, respectively, compared to the aluminum structure.
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Fig. 2

Loaded by gravity only, the structure remains elastic for all reinforcement parameters. Therefore, in choosing
mechanical and structural parameters of CM, one should be guided by the fact that the maximum deflections do
not exceed the values established by specifications.

Stress–Strain State of the Reflector Under Gravity, Temperature, and Wind Loads. For reflector
antennas, the wind workloads are pressures of 600–800 kg/m2, which corresponds to wind velocities of the order of
20 m/sec. Moreover, antennas should be designed so as to sustain hurricane winds with velocities of 40 m/sec and
higher; in this case, the wind load can reach 3000 kg/m2 and more.

Like gravity, the wind load can be decomposed into axisymmetric and antisymmetric components. However,
since the antisymmetry planes of gravity and wind differ in the general case, the wind load corresponds to harmonics
with m = −1, 0, and 1. We ignore the load components tangent to the surface. In this case, the components q3,m

have the additional terms

∆q3,−1 = vyp sin θ, ∆q3,0 = −vzp cos θ, ∆q3,1 = vxp sin θ,

where p is the wind load, ‖vx, vy, vz‖ is the wind direction in the orthonormal coordinate system with the axes Oz
(directed along the symmetry axis toward the reflector focus), Ox (parallel to the Earth’s surface), and Oy (normal
to the Oxz plane and directed away from the Earth’s surface).

We consider the case where the reflector of a parabolic antenna with an aperture diameter of 4 m and a focal
distance of 1.5 m is shaped as a shell of constant thickness 2h = 15 · 10−3 m. The antenna axis is tilted at an angle
of 30◦ to the Earth’s surface. In addition to gravity, a strong lateral wind acts on the antenna, which corresponds
to a pressure p = 2000 kg/m2. Let the reflector be heated to 75◦C. We consider the behavior of the aluminum
structure (the coefficient of linear expansion is α0 = 2.33 · 10−5 K−1) reinforced by three families of high-modulus
carbon fibers (αn = 1.5 · 10−6 K−1).

The wind and temperature loads substantially increase the stresses in the matrix and reinforcement (Fig. 3a).
For some structural parameters of the CM, the stress intensity in the aluminum matrix exceeds the critical value.
However, this can be avoided by varying the reinforcement parameters. The required rigidity of the mirror can also
be ensured by choosing appropriate reinforcement parameters (Fig. 3b).

Let us consider how a similarly reinforced reflector with a titanium matrix (ρ0 = 4.5 · 103 kg/m3, E0 =
110 GPa, α0 = 8.3 · 10−6 K−1, and σ∗0 = 600 MPa) behaves under the same conditions. The stresses in the CM
elements decrease substantially (Fig. 4a), and owing to the high ultimate strength, the titanium matrix remains
elastic for all values of the CM structural parameters. One can see from Fig. 4b that the values of wmax are much
lower compared to the aluminum-carbon structure. Nonetheless, the minimum deflections of the reflector with the
titanium matrix are 1.5 times higher compared to the aluminum matrix, i.e., the use of a high-modulus matrix
does not necessarily increase the rigidity of the structure. We note that, under these loading conditions, plastic
strains occur in the isotropic aluminum structure (bs0 > 1), the deflections in the isotropic titanium reflector, which
remains elastic, are as large as 5 mm, whereas the deflections of the reflector with an aluminum matrix and carbon
fibers attain only 3.3 mm for certain reinforcement parameters.
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Fig. 3

Fig. 4
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Adequacy of Calculations. The question of applicability of the discrete orthogonalization method to
solving of the problem of determining the stress–strain state of composite shell structures is of considerable interest.
Previously, these problems were solved by the spline-collocation method [4–8] with a known theoretical estimate of
the error. Golushko et al. [4, 5] determined the axisymmetric stress–strain state of combined tanks and high-pressure
vessels. The calculation results obtained by two methods mentioned above are in excellent agreement.

For the parabolic reflector, the components of the stress–strain state calculated by the discrete-
orthogonalization and spline-collocation methods differ by no more than 0.05% (for each harmonic). Decreasing
the grid size in the discrete-orthogonalization method and performing the calculations by the spline-collocation
method with higher accuracy, we find that the results are closer, the relative differences being as small as 10−8%.
The discrete-orthogonalization method is less time consuming by a factor of 3–6 compared to the spline-collocation
method.

Conclusions. An analysis of the stress–strain state of the reinforced parabolic reflector loaded by gravity
shows that the structure is underloaded. This allows one to choose the reinforcement structure under the rigidity
requirements. A comparison with the isotropic aluminum structure shows that the reinforcement can either improve
or deteriorate technical performances of the reflector. Wind and temperature loads can cause considerable distortion
and even failure of the structure. At the same time, it was found that an appropriate choice of the reinforcement
structure can prevent the failure of the reflector and decrease its strains.

It was shown that structural and mechanical characteristics of a CM substantially affect the behavior of the
structure: the stresses in the matrix change by approximately a factor of 2, the stresses in the reinforcing fibers
change by more than a factor of 6, and the maximum deflections change by more than a factor of 5. The use of
a more rigid matrix is not necessarily justified from the viewpoint of reducing the deviation of the reflector profile
from a specified shape.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 00-15-96172)
and performed within the framework of the Federal program “Integration” (Grant No. 274).
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